Все уже в сообществах на Hobbyportal.ru, а вы всё ещё здесь?
Уважаемые пользователи форума Hobbyportal.ru, по решению администрации портала,
форум Хоббипортал продолжит своё существование в автономном режиме и больше не
будет поддерживаться. Все мастера рукоделия теперь обсуждают самые интересные темы в
разделе Сообщества на Hobbyportal.ru, присоединяйтесь!
Добавлено: 09 Сен 2012 18:48 Заголовок сообщения: Фракталы
Вот что пишет Википедия
Цитата:
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической.
Термин
Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:
Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
Является самоподобной или приближённо самоподобной.
Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.
История
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Примеры
Самоподобные множества с необычными свойствами в математике
Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:
множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
губка Менгера — аналог множества Кантора в трёхмерном пространстве;
примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.
Рекурсивная процедура получения фрактальных кривых
Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.
Примерами таких кривых служат:
кривая дракона,
кривая Коха,
кривая Леви,
кривая Минковского,
кривая Пеано.
С помощью похожей процедуры получается дерево Пифагора.
Стохастические фракталы
Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:
траектория броуновского движения на плоскости и в пространстве;
граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно). Фрактал - это такой объект, для которого не важно, с каким усилением его рассматривать в увеличительное стекло, но при всех его увеличениях структура остается одной и той же. Большие по масштабу структуры полностью повторяют структуры, меньшие по масштабу. Так, в одном из примеров Мандельброт предлагает рассмотреть линию побережья с самолета, стоя на ногах и в увеличительное стекло. Во всех случаях получим одни и те же узоры, но только меньшего масштаба. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта "The Fractal Geometry of Nature" ставший классическим - "Какова длина берега Британии?". Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна.
Типы фракталов
Фракталы делятся на группы. Самые большие группы это:
Хочу предложить вашему вниманию, дорогие друзья, несколько альбомов с фракталами от Satu Oli (Финляндия). К сожалению, никакой информации об авторе я найти не смогла. Но работы - это "пиршество" великолепия!
Несколько работ из альбома Satu OliAbstract
Abstract
Play With Colours
Prison Abstract
Winter in Wonderland
Остальные работы можно посмотреть в альбоме Фракталы от Satu Oli - Abstract _________________ Ко мне можно и на "ты".
Ваша Тётя-Мама
Все работы Satu Oli, найденные мной в интернете, можно посмотреть в альбоме Фракталы от Satu Oli (Финляндия) - ВСЁ _________________ Ко мне можно и на "ты".
Ваша Тётя-Мама
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете голосовать в опросах Вы не можете вкладывать файлы Вы не можете скачивать файлы